INSTRUCTION MANUAL

I - INTRODUCTION

SCOPE OF MANUAL. This instruction manual covers the installation and operation of the Kepco JBW 10W Series of Switching Power Supplies.
DESCRIPTION. The Kepco JBW 10W Series consists of five models of switching power supplies, with a single output as shown in Table 1. Units may be operated with a nominal 100 to 120 V a-c and 220 to 240 V a-c (input voltage range 85 to $265 \mathrm{Va}-\mathrm{c}$), $50-60 \mathrm{~Hz}$ (input frequency range $47-440 \mathrm{~Hz}$) They will also operate on 110 V to 370 V d-c input. The JBW 10 W Series employs a light weight ferrite core with 100 KHz switching frequency. Regulation is provided by pulse width modulation. A FET power stage, operating in the flyback mode provides a smooth isolated d-c output. A thermistor circuit prevents excessive turn-on current surge. Overvoltage protection is provided. Current limiting with automatic recovery from short circuit is featured. Units are manufactured on an open frame pc board.

Table 1 contains specifications and operating limits of individual JBW 10W Series models. Section II (following) contains specifications and operating limits common to all JBW 10W Series Models.

II - SPECIFICATIONS

The following specifications are at nominal input voltages at $25^{\circ} \mathrm{C}$ unless otherwise specified.
TABLE 1. OUTPUT RATINGS AND SPECIFICATIONS, JBW 10W SERIES

MODEL		JBW 03-2R0	JBW 05-2R0	JBW 12-0R9	JBW 15-0R7	JBW 24-0R5
OUTPUT VOLTS, d-c		3.3 V	5 V	12 V	15 V	24V
SETTING TOLERANCE		3.14-3.46V	4.75-5.25V	11.4-12.6V	14.25-15.75V	22.8-25.2V
ADJUSTMENT RANGE		2.7-3.6V	FIXED	FIXED	FIXED	FIXED
MAXIMUM OUTPUT RATINGS	$50^{\circ} \mathrm{C}$ amb.	2.0A/6.6W (3)	2.0A/10W	0.9A/10.8W	0.7A/10.5W	0.5A/12W
	$60^{\circ} \mathrm{C} \mathrm{amb}$.	1.4A/4.6W	1.4A/7.0W	0.63A/7.56W	0.49A/7.35W	0.35A/8.4W
CURRENT LIMIT (AMPS)		3.0 min	2.5 min	1.12 min	0.87 min	0.62 min
OVP RANGE (VOLTS)		4.0 min	5.75 min	13.8 min	17.25 min	27.6 min
EFFICIENCY	$100 \mathrm{Va}-\mathrm{c}$	68\%	71\%	78\%	79\%	82\%
	$240 \mathrm{Va}-\mathrm{c}$	68\%	71\%	79\%	80\%	83\%
ACCEPTABLE OUTPUT CAPACITOR μ Fmax., (fixed load resistance)		10000	10000	5000	4000	2000
$\begin{aligned} & \text { RIPPLE } \\ & \text { AND } \\ & \text { NOISE } \\ & (\mathrm{mVp}-\mathrm{p}) \end{aligned}$	ripple (typ)	80	80	120	120	120
	$\begin{gathered} \text { ripple } \\ -10-0^{\circ} \mathrm{C} \text {, max } \end{gathered}$	140	140	160	160	160
	spike noise (typ) ${ }^{(2)}$	120	120	150	150	150
	$\begin{gathered} \text { spike noise }{ }_{(2)} \\ -10-0^{\circ} \mathrm{C}, \max ^{(2)} \end{gathered}$	160	160	180	180	180

(1) Switching component approximately $100 \mathrm{KHz}, 0$ to 100% load, 0 to $50^{\circ} \mathrm{C}$, tested with $100 \mu \mathrm{~F}$ electrolytic and $0.1 \mu \mathrm{~F}$ film capacitors across the load and connected to the power supply via 5.9 in (150 mm) wires
(2) Measured with a 20 MHz bandwidth.
(3) 2.7 A Peak, $\leq 10 \mathrm{sec}$.

INPUT VOLTAGE:

Nominal $100-120 \mathrm{~V}$ a-c, $220-240 \mathrm{~V}$ a-c, range: $85-265 \mathrm{~V}$ a-c (0 to 100% load, -10 to $60^{\circ} \mathrm{C}$)
d-c range: $110-370 \mathrm{~V}$ d-c

INPUT SOURCE FREQUENCY:

 Nominal $50 / 60 \mathrm{~Hz}$; Range $47-440 \mathrm{~Hz}$. (At 440 Hz the leakage current exceeds the VDE safety specification limit,)INPUT CURRENT: (maximum load at $25^{\circ} \mathrm{C}$ with nominal output voltage):
0.25 typ., 0.35 max. ($100 \mathrm{Va}-\mathrm{c}$ input, 100% load); 0.15 A typ., 0.25 A max. ($240 \mathrm{Va}-\mathrm{c}$ input, 100% load)

INPUT PROTECTION AND SOFT START: A thermistor circuit reduces start-up surge. Units are protected against shorts by an input fuse. Fuse value 2.0A, 250V.
INPUT SURGE: cold start
15A typ, 20A max. (100 V a-c, 100\% load); 30A typ., 40A max. (240 Va-c, 100\% load)

STABILIZATION:

Source Effect (85 to $265 \mathrm{Va}-\mathrm{c}$) 0.4\% max.
Load Effect, measured at sensing terminals ($0 \%-100 \%$ load change) 0.8% max.
Temperature effect $\left(-10\right.$ to $\left.50^{\circ} \mathrm{C}\right) 1.0 \%$ max.
Combined effect (envelope including overshoot at start up) 4.0% max.
Drift ($1 / 2$ to 8 hr . at $25^{\circ} \mathrm{C}$) 0.4% max.
TRANSIENT RECOVERY: A step load change from 50% to 100% of rated load in 50 microseconds or more, produces no more than 4% output voltage excursion. Temperature range from -10 to $50^{\circ} \mathrm{C}$.

OUTPUT HOLDING TIME: Upon input interruption the output is maintained for 140 milliseconds typical with 240 Va-c input voltage, and for 15 milliseconds typical with $100 \mathrm{Va}-\mathrm{c}$ input voltage. The condition for output load is 100%.
START UP TIME: 700ms max. 200ms typ. at $100 \mathrm{Va}-\mathrm{c}, 240 \mathrm{Va}-\mathrm{c}$
OVERVOLTAGE PROTECTION: Fixed, factory set. See Table 1. The overvoltage circuit is set by Zener diode clamp, latching could occur.

OVERCURRENT: Square type, output voltage returns to rated level upon removal of cause of malfunction (long term overcurrent could damage unit)
OPERATING TEMPERATURE: -10 to $60^{\circ} \mathrm{C}$ (start up -20 to $-10^{\circ} \mathrm{C}$). See the derating, Figure 1 . Do not allow the power supply to become dust covered because that will decrease the cooling efficiency of the unit and cause insulation to deteriorate.
STORAGE TEMPERATURE: $-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
COOLING: Natural convection
ORIENTATION: Vertical or horizontal (see Figure 3
HUMIDITY: 20% to 90% relative humidity, operating and storage, noncondensing, wet bulb temperature $<$ or $=35^{\circ} \mathrm{C}$

WITHSTANDING VOLTAGE:

(at 5 to $35^{\circ} \mathrm{C}$ ambient, 45 to 85% relative humidity, cutout current 10 ma):
Between input and output terminals, 3.0 KV a-c for 1 minute (with Y-capacitor removed).
Between input and output or chassis, 2000V a-c for 1 minute.
Between input terminals and chassis, 500 V a-c for 1 minute.INSULATION RESISTANCE:
Between input and output, 100 megohms minimum
($500 \mathrm{~V} \mathrm{d-c}$,5 to $35^{\circ} \mathrm{C}$ ambient, 45 to 85% relative humidity)

LEAKAGE CURRENT:

0.75 mA max, 0.1 mA typ at 100 V a-c and 60 Hz (single pole switching)
0.75 mA max, 0.15 mA typ at 240 V d-c and 60 Hz (single pole switching in conformance
to UL 1950/IEC 950)

FIGURE 1. DERATING PLOT

VIBRATION: Three axes, one hour each, sweep time 10 min :, nonoperating
$5-10 \mathrm{~Hz}$., 10 mm amplitude
$10-200 \mathrm{~Hz}$., $2 \mathrm{G}\left(19.6 \mathrm{~m} / \mathrm{s}^{2}\right)$ acceleration
SHOCK: Three axes, $60 \mathrm{G}\left(588 \mathrm{~m} / \mathrm{s}^{2}\right), 11 \mathrm{~ms} \pm 5 \mathrm{msec}$ pulse duration, three shocks each axis, nonoperating, $1 / 2$ sine pulse
SAFETY: All units designed to meet UL 1950D3, CSA Electrical Bulletin 22.2NO950-95, and TÜV Rheinland EN60950 (ambient temp. $50^{\circ} \mathrm{C}$). JBW 10 W units are CE marked per the Low Voltage Directive (LVD), EN60950. [The standards do not apply with DC input operation]
EMI RADIATED: FCC Class B, VCCI-B, EN55011-B, EN55022-B
ESD: Ground potential area, 10KV (charge capacitor 500PF, series resistor 100 ohms)
SURGE WITHSTAND: $1.2 \times 50 \mu \mathrm{~s} 3 \mathrm{KV}$ pulse (operating, 100 ohm internal series resistor)
INCOMING NOISE: $1 \mu \mathrm{~s} 2 \mathrm{KV}$ pulse, $50-60 \mathrm{~Hz}$, with 50 ohm termination, input to input, input to ground, less than five minutes, operating
WARRANTY: One year.

III — INSTALLATION

INSTALLING THE POWER SUPPLY: Refer to Figures 3 and 4. The unit may be mounted on one mounting surface. The air surrounding the power supply must not exceed the ambient values given in the graph in Figure 1.
INSTALLATION (INSULATION): Install unit 0.3 inches (8 mm) away from base with the use of 0.24 inch (6 mm) diameter spacers attached to the PC board. Keep at least 0.16 inches (4 mm) spacing around and above the unit to comply with insulation and safety requirements. An insulator must be used if the spacing is less than 0.16 inches (4 mm) (see Figure 4).

VENTILATION: It is recommended to keep at least 0.40 inches $(10 \mathrm{~mm})$ clearance from adjacent equipment for proper ventilation
CONNECTIONS: Connect the load to the power supply by connecting the two (+) output wires from terminal block TB2 to the load (+) terminal, and the two $(-)$ output wires from TB2 to the load (-) terminal. The AC input power is applied via the terminal block TB1. Make sure to connect the AC input Neutral and Line wires to the P2 and P3 pins respectively of TB1 (see Figure 2). A Cable Kit (P/N 219-0406) is available as an option from Kepco (see Figures 2 and 5). The kit includes an input cable, terminated on one end with an input mating connector; and an output cable, terminated on one end with an output mating connector.

IV - OPERATION

PROTECTION DIODE: When a number of power supplies are operating in series, the current rating is to be limited to the rating of the power supply with the lowest rating. A diode ($\mathrm{Vr}>2 \Sigma \mathrm{Vo}$, $\mathrm{If}>2 \mathrm{lo}, \mathrm{Vf} \ll \mathrm{low}$) must be connected to the power supply output terminals to protect the unit from reverse voltage.

FIGURE 2. LOAD CONNECTIONS

FIGURE 3. VENTILATION, INSULATION AND MOUNTING DIRECTION

$P 3$	L
$P 2$	N
$P 1$	$\frac{1}{2}$

INPITT CONNECTOR

3010234

OUTPUT CONNECTOR
NOTES: 1. Dimensions are in inches, dimensions in brackets are in millimeters.
2. TOLERANCES: $\pm 0.04 "[\pm 1.0 \mathrm{~mm}]$ unless specified.
3. WEIGHT: 1.76 oz. (50 gr .) max.
4. PCB: Thickness $=0.06 \pm 0.008$ in. $(1.6 \pm 0.2 \mathrm{~mm})$

FIGURE 4. JBW 10W MECHANICAL OUTLINE DIAGRAM

Mating Connectors $^{(4)}$			
Connector	Terminal Pin	Socket Housing	MFR
	SVH-21T-P1.1	VHR-5N	JST $^{(1)}$
	T101	H101-05	LCE $^{(2)}$
	$50539-8100$	$51144-0500$	MLX $^{(3)}$
	SXH-001T-P0.6	XHP-4	$\mathrm{JST}^{(1)}$
	T221-01	H221-04	LCE $^{(2)}$
	$67262-001$	$67261-0400$	MLX $^{(3)}$

(1) $\mathrm{JST}=$ Japan Solderless Terminal Mfg. Co.
(2) LCE= Long Chu Electronics Co.
(3) MLX = Molex
(4) Optional cable kit (P/N 219-0406) includes one input and one output cable (one meter long) with mating connectors for TB1 and TB2, unterminated at other end.

FIGURE 5. INPUT/OUTPUT CONNECTIONS

KEPCO, INC. 131-38 SANFORD AVENUE FLUSHING, NY. 11352 U.S.A. TEL (718) 461-7000 FAX (718) 767-1102 http://www.kepcopower.com email: hq@kepcopower.com

